We know that tangents from an external point are equal in length.
∴ PQ = PR
In Δ PQR,
PQ = PR
∴∠PQR=∠PRQ (Angles opposite to equal sides are equal).
Now in Δ PQR,
∠PQR+∠PRQ+∠RQP=180∘2∠RQP=180∘−30∘∠RQP=75∘
Also, radius is perpendicular to the tangent at the point of contact.
∴∠OQP=∠ORP=90∘
Now, in PQOR,
∠ROQ+∠OQP+∠QPR+∠PRO=360∘90∘+90∘+30∘+∠ROQ=360∘∠ROQ=150∘
Since, angle subtended by an arc at any point on the circle is half the angle subtended at the centre by the same arc.
angle QSR = 75∘
Also, ∠QSR=∠SQT (Alternate interior angles)
∴∠SQT=75∘
Now,
∠SQT+∠PQR+∠SQR=180∘75∘+75∘∠SQR=180∘∠SQR=30∘