wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In Fig. 9.20. O is the centre of a circle of radius 5 cm, T is a point such that OT = 13 cm and OT intersects the circle at E. If AB is the tangent to the circle at E and it intersects the tangents PT and QT at A and B, find the length of AB.

81744.jpg

A
103 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
203 cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
10 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
15 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 203 cm
GivenOisthecentreofacircleofradius5cm.Tisapointoutsidethecircleatadistanceof13cmfromO.OTintersectsthecircleatEQT&PTaretangentsfromTtothecircleatQ&P.ABisthetangenttothecircleatEanditintersectQT&PTatA&Brespectively.TofindoutThelengthofAB.SolutionQT&PTaretangentsfromTtothecircleatQ&P.QT=PT.SoinΔOPT&ΔOQTwehaveQT=PT(proved),OTcommonside,andOP=OQ(radiiofthesamecircle.)ΔOPT&ΔOQTarecongruentbySSStest.PTO=QTO........(i)NowABisthetangenttothecircleatEandOEorOTisthelinejoiningthecentreOwiththepointofcontactE.OEorOTABAET=90o=BET.....(ii)SoinΔAET&ΔBETwehavePTO=QTO....(from.(i))i.eATO=BTO.AET=BET(fromii),andsideETiscommon.ByASAtestΔAET&ΔBETarecongruent.AE=BE........(iii)AgainOPT=90o(OPistheradiusdrawntothepointofcontactPofthetangentPT).....(iv)BetweenΔOPT&ΔABTwehaveOPT=AET(fromii&ivbothare=90o),AET=BET(fromii).ΔOPT&ΔABTaresimilar.PTET=OPAE=OP12ABAB=2OPPT×ET..........(v)NowΔOPTisarightonewithhypotenuseOT,OP=OE=5cm,OT=13cmPT=OT2OP2=13252cm=12cmandET=OTOE=(135)cm=8cmIn(v)wehaveAB=2OPPT×ET.i.eAB=2×512×8 cm=203cm.AB=203cm.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Normal Line to a Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon