Given : ABE and BDE are two equilateral triangles.
Considering a as the side of △ABC.
Then, ar(ABC)=√34a2
(i) Since D is the midpoint of BC.
So, BD=a2
ar(BDE)=√34(a2)2=√316a2
⇒ar(BDE)=14ar(ABC)
(ii) Since DE is a median of △BEC and each median divides a triangle in two other △s of equal area,
So, ar(BDE)=12ar(BEC) ... (1)
∠EBC=∠BCA=60o
This suggests that they are alterante angles between the lines BE and AC with BC as the transversal.
So, BE∥AC.
Since △BEC and BAE stand on the same base BE and lie between the same parallel lines BE and AC.
So, ar(BEC)=ar(BAE)
ar(BDE)=12ar(BEC) (from (1))
ar (ΔBDE)=12ar(BAE).
(iii) ar(BDE)=12ar(BEC)
(ED is a median of △BEC and median divides the triangle in two other △s of equal area. )
ar(BDE)=14ar(ABC) (Using result from (i))
So, 14ar(ABC)=12ar(BEC)
⇒ar(ABC)=2ar(BEC)
(iv) ∠ABD=∠BDE=60∘ (Angles of equilateral triangle)
These are alternate angles between the lines AB and ED with BD as transversal.
So, BA || ED.
So, ar(BDE)=ar(AED) ( Δs on the same base ED and between the same parallel lines AB and DE)
Subtracting ar(FED) from both sides,
⇒ar(BDE)–ar(FED)=ar(AED)–ar(FED)
⇒ar(BEF)=ar(AFD)
(v) In Δ ABC,
By Appolonius theorem,
AB2+AC2=2AD2+2BD2
Since AB=AC,
AD2=AB2−BD2
AD2=(a)2−(a2)2
AD2=a2−a24=3a24
AD=√32a
In Δ BED,
By using Appolonius theorem,
Drop perpendicular from EP to BD,
So , EP is the median BED
EP2=DE2−DP2
EP2=(a2)2−(a4)2
EP2=a24−a216=3a216
⇒EP=√3a4
ar(AFD)=12×FD×AD
ar(AFD)=12×FD×√32a
ar(EFD)=12×FD×EP
ar(EFD)=√34a
Now,
ar(AFD)=√32a
ar(EFD)=√34a
ar(AFD)=2ar(EFD)
Also, ar(BEF)=ar(AFD)
So, ar(BFE)=ar(AFD)=2ar(EFD)
(vi) ar(BDE)=14ar(ABC)
So, ⇒ar(BEF)+ar(FED)=14×2ar(ADC)
2ar(FED)+ar(FED)=12(ar(AFC)–ar(AFD) [Using part (v)]
3ar(FED)=12ar(AFC)–12×2ar(FED)
4ar(FED)=12ar(AFC)
ar(FED)=18ar(AFC)