In △DCA,
By Pythagoras theorem,
(DA)2=(CA)2+(CD)2.......(1)
In △ABD,
By Pythagoras theorem,
(BD)2=(AB)2+(AD)2........(2)
In △ABC,
(i)
By Pythagoras theorem,
(AB)2=(AC)2+(BC)2.......(3)
∴ (AB)2=(AD)2−(CD)2+(BC)2 (From 1 and 3)
∴ (AB)2=(BD)2−(AB)2−(CD)2+(BC)2
∴ 2(AB)2=(BD)2−(BD−BC)2+(BC)2
∴ (AB)2=BC.BD
(ii)
Adding (1) and (3),
∴ (AB)2+(AD)2=2(AC)2+(CD)2+(BC)2
∴ (BD)2−(AD)2+(AD)2=2(AC)2+(CD)2+(BC)2 (From 2)
∴ (BC+CD)2=2(AC)2+(CD)2+(BC)2
Hence, Solving the above equation we get,
(AC)2=BC.DC
(iII)
Subtracting (1) and (2) we get,
2(AD)2−(BD)2=(CA)2+(CD)2−(AB)2
∴ 2(AD)2−(BD)2=(CA)2+(CD)2−(AC)2−(BC)2
∴ 2(AD)2−(BD)2=(BD−BC)2−(BC)2
Hence, Solving the above equation we get,
(AD)2=BD.DC