In Fig. AC = AE, AB = AD and ∠ BAD = ∠ EAC. Prove that BC = DE.
[2 MARKS]
Concept : 1 Mark
Proof : 1 Mark
We have,
∠BAD = ∠EAC
Then,
∠BAD + ∠DAC = ∠EAC + ∠DAC
[Adding ∠DAC to both sides]
⇒ ∠BAC = ∠DAE ---- (i)
Now, In ΔABC and ΔADE,
AB = AD [Given]
∠BAC = ∠DAE [From (i)]
and, AC = AE [Given]
So,
ΔABC ≅ ΔADE [SAS congruence criterion]
⇒BC = DE [ C.P.C.T ]