wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

In fig., AD is a median of a triangle ABC and AMBC. Prove that:
(i) AC2=AD2+BC.DM+(BC2)2

(ii) AB2=AD2BC.DM+(BC2)2

(iii) AC2+AB2=2AD2+12BC2

465480_4f40cfc149554d5593c5553f8ccc3a53.png

Open in App
Solution

It is given that
AMD=900

Referring to the figure, we can say that
ADM<900 and ADC>900

Now,
(i)
To prove:
AC2=AD2+BC.DM+(BC2)2

In ΔADC,ADC ia an obtuse angle.
AC2=Ad2+DC2+2DC.DM
AC2=AD2+(BC2)2+2.BC2.DM
AC2=AD2+BC.DM+(BC2)2

(ii)
To prove:
AB2=AD2BC.DM+(BC2)2

In ΔABD,ADM is an obtuse angle.
AB2=AD2+BD22BD.DM
AB2=AD2+(BC2)22.BC2.DM
AB2=AD2BC.DM+(BC2)2

(iii)
To prove:
AC2+AB2=2AD2+12BC2

From the result of (i) and (ii), adding those, we get
AC2+AB2=2AD2+12BC2

498728_465480_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area of a Quadrilateral
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon