Given: ∠ABP=∠ACQ
By linear pair property,
∠ABP+∠ABC=180∘ ⋅⋅⋅ (i)
∠ACQ+∠ACB=180∘ ⋅⋅⋅ (ii)
From (i) and (ii),
∠ABP+∠ABC=∠ACQ+∠ACB
So, ∠ABC=∠ACB
[∵ ∠ABP=∠ACQ ] [1 Mark]
In ΔABC,
∠ABC+∠ACB+∠BAC=180∘
[Using angle sum property of a triangle]
⇒2∠ABC=180∘−68∘
[∵∠ABC=∠ACB]
⇒2∠ABC=112∘
⇒∠ABC=56∘ [1 Mark]
Now, ∠ABC and ∠ABP forms a linear pair, their sum will be 180∘.
⇒ ∠ABC + ∠ABP = 180∘
⇒∠ABP=180∘−∠ABC
⇒∠ABP=180∘−56∘
⇒∠ABP=124∘ [1 Mark]