Given : chord AB bisects chord CD at O
CO=OD …..(i)
Join BC
∠CAB and ∠BDC, arc angles of same segment so will be equal
∠CAB=∠BDC …..(ii)
In ΔCOA and ΔDOB
∠CAO=∠BDO (from equation (ii))
CO=OD (given eqn. (i)
∠COA=∠DOB (vertically opposite angles)
By ASA congruence rule.
ΔCOA=ΔDOB
Thus, corresponding sides of congruent triangle are same,
OA=OB
OB=OC [∵OB and OC, arc radius of circle]
OA=OC
(OA)2=(OC)2
(OA)2=OC×OC
OA2=OC×OD [OC=OD]
or OA2=DO×OC