i) In
ΔABC,
DN⊥AB and BC⊥AB
So, DN∥BC ...(1)
DM⊥BC and AB⊥BC
So, DM∥AB ...(2)
From (1) and (2),
□DMBN is a rectangle.
∴BM=DN
In ΔBMD,
∠M+∠BDM+∠DBM=180o
⇒∠BDM+∠DBM=90o ...(1)
Similarly, in ΔDMC,
∠CDM+∠MCD=90o ...(2)
We know, BD⊥AC ....given
∴∠BDM+∠MDC=90o ..(3)
From (1) and (3), we get
∠BDM+∠DBM=∠BDM+∠MDC
∴∠DBM=∠MDC ...(4)
Similarly, ∠BDM=∠MCD ...(5)
In ΔBMD and ΔDMC,
∠BMD=∠DMC ...Each 90o
∠BDM=∠MCD ...From (5)
ΔBMD∼ΔDMC ....AAA test of similarity
∴BMDM=MDMC ....C.S.S.T.
∴DNDM=DMMC ...∵BM=ND
⇒DM2=DN×MC
ii) Similarly, we can prove ΔDNB∼ΔDNA
BNDN=NDNA
DMDN=DNAN ...[∵BN=DM]
DN2=DM×AN