(i) ar(DOC)=ar(AOB)
Given: A quadrilateral ABCD where OB=OD & AB=CD.
To prove: ar(DOC)=ar(AOB)
Proof: Let us draw OP⊥AC and BQ⊥AC:
In ΔDOP and ΔBOQ,
∠DPO=∠BQO (Both 90∘)
∠DOP=∠BOQ (vertically opposite angles)
OD=OB (Given)
ΔDOP≅ΔBOQ(ASS congruence rule)
∴ DP=BQ(CPT) ………(1)
and ar(DOP)=ar(BOQ)……………..(2)$
(Area of congruent triangles are equal)
In ΔCOP and ΔABQ,
∠CPD=∠AQB (Both 90o)
CP=AB (Given)
DP=BQ(from (1))
∴ΔCDP≅ΔABQ (RHS congruence rule)
⇒ar(CDP)=ar(ABQ) …………(3)
(Area of congruent triangles are equal)
Adding (2) & (3):
ar(DOP)+ar(CPD)=ar(BOQ)+ar(ABQ)
ar(DOC)=ar(AOB)
Hence proved.
(ii) ar(DCB)=ar(ACB)
In part (i) we proved that
ar(DOC)=Ar(AOB)
Adding ar(OCB) both sides
ar(DOC)+ar(OCB)=ar(AOB)+ar(OCB)
⇒ar(DCB)=ar(ACB).
(iii) In part (ii) we proved
ar(ΔDBC)=ar(ΔABC)
We know that two trinagles having same base & equal areas, lie between same parallels.
Here ΔDBC & ΔABC are on the same base BC & are equal in area.
So, these triangles lie between the same parallels DA and CB.
∴DA||CB.
Now,
In ΔDOA & ΔBOC
∠DOA=∠BOC (vertically opposite angles)
∠DAO=∠BCO
(DA||BC,AC traversal, alternate angles equal)
OB=OB (Given)
∴ΔDOA≅ΔBOC (ASA congruency)
DA=BC (CPCT)
So, in ABCD, since DA||CB and DA=CB.
One pair of opposite sides of quadrilateral ABCD is equal and parallel.
∴ ABCD is a parallelogram.
Hence proved.