In fig., LM ∥ AB. If AL = x - 3, AC = 2x, BM = x - 2 and BC = 2x + 3, Find the value of x.
In △ABC, we have
LM ∥ AB
∴ ALLC = MBMC [By Thale's Theorem]
⇒ ALAC−AL = BMBC−BM
⇒ x−32x−(x−3) = x−2(2x+3)−(x−2)
⇒ x−3x+3 = x−2x+5
⇒ (x - 3) (x +5) = (x - 2) (x + 3)
⇒ x2+2x−15=x2+x−6
⇒ x = 9