Given: OD⊥BC, OE⊥AC and OF⊥AB
Construction: Join point O with vertices of triangle A, B and C to get segments OA, OB and OC.
1) In right angled triangle △AFO, by Pythagoras theorem,
AF2+FO2=AO2
∴AF2=AO2−FO2 (1)
In right angled triangle △BDO, by Pythagoras theorem,
BD2+DO2=BO2
∴BD2=BO2−DO2 (2)
In right angled triangle △CEO, by Pythagoras theorem,
CE2+EO2=CO2
∴CE2=CO2−EO2 (3)
Adding equations (1), (2) and (3), we get,
AF2+BD2+CE2=AO2−FO2+BO2−DO2+CO2−EO2
∴AF2+BD2+CE2=AO2+BO2+CO2−FO2−DO2−EO2
Hence proved.
2) in right angled triangle △AEO, by Pythagoras theorem,
AE2+EO2=AO2
∴AE2=AO2−EO2 (4)
In right angled triangle △CDO, by Pythagoras theorem,
CD2+DO2=CO2
∴CD2=CO2−DO2 (5)
In right angled triangle △BFO, by Pythagoras theorem,
BF2+FO2=BO2
∴BF2=BO2−FO2 (6)
Adding equations (4), (5) and (6), we get,
AE2+CD2+BF2=AO2−EO2+CO2−DO2+BO2−FO2
∴AE2+CD2+BF2=(AO2−FO2)+(BO2−DO2)+(CO2−EO2)
From equations (1), (2) and (3),
∴AE2+CD2+BF2=AF2+BF2+CD2
Hence proved