wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In Fig., O is a point in the interior of a triangle ABC,ODBC,OEAC and OFAB. Show that
(i)OA2+OB2+OC2OD2OE2OF2=AF2+BD2+CE2,
(ii) AF2+BD2+CE2=AE2+CD2+BF2.
785673_bbc6c3a95868420bba0f8996a1d7ff45.png

Open in App
Solution

Given: ODBC, OEAC and OFAB

Construction: Join point O with vertices of triangle A, B and C to get segments OA, OB and OC.

1) In right angled triangle AFO, by Pythagoras theorem,
AF2+FO2=AO2
AF2=AO2FO2 (1)

In right angled triangle BDO, by Pythagoras theorem,
BD2+DO2=BO2
BD2=BO2DO2 (2)

In right angled triangle CEO, by Pythagoras theorem,
CE2+EO2=CO2
CE2=CO2EO2 (3)

Adding equations (1), (2) and (3), we get,
AF2+BD2+CE2=AO2FO2+BO2DO2+CO2EO2

AF2+BD2+CE2=AO2+BO2+CO2FO2DO2EO2
Hence proved.

2) in right angled triangle AEO, by Pythagoras theorem,
AE2+EO2=AO2
AE2=AO2EO2 (4)

In right angled triangle CDO, by Pythagoras theorem,
CD2+DO2=CO2
CD2=CO2DO2 (5)

In right angled triangle BFO, by Pythagoras theorem,
BF2+FO2=BO2
BF2=BO2FO2 (6)

Adding equations (4), (5) and (6), we get,
AE2+CD2+BF2=AO2EO2+CO2DO2+BO2FO2

AE2+CD2+BF2=(AO2FO2)+(BO2DO2)+(CO2EO2)

From equations (1), (2) and (3),

AE2+CD2+BF2=AF2+BF2+CD2
Hence proved

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Any Point Equidistant from the End Points of a Segment Lies on the Perpendicular Bisector
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon