wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In fig seg DH ⊥ seg EF and seg GK ⊥ seg EF.
If DH = 12cm, GK= 20 cm
and A(∆DEF) = 300 cm2 then find
(i) EF
(ii) A(∆GEF)
(iii) A(⎕DFGE)

Open in App
Solution

(i) We know:
Area of a triangle = 12 × Base × Height
Thus, we get:
A(ΔDEF) = 12 × EF × DH
300 = 12 × EF × 12
300 = EF × 6
EF = 50 cm

(ii)
From the figure, we observe that ΔDEF and ΔGEF have a common base EF.
We know that the ratio of the areas of two triangles with the common base is equal to the ratio of their corresponding heights.
Thus, we get:
ADEFAGEF=DHGK300AGEF=1220AGEF=300×2012=500 cm2

(iii)
From the figure, we observe that the area of quadrilateral DFGE is equal to the sum of the areas of ΔDEF and ΔGEF.
Thus, we get:
A(DFGE) = A(ΔDEF) + A(ΔGEF)
= 300 + 500
= 800 cm2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Areas of Similar Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon