Given
TQ is the bisector of ∠PQR
So, ∠PQT=∠TQR=12∠PQR
Also,
TR is the bisector of ∠PRS
So, ∠PRT=∠TRS=12∠PRS
In PQR
∠PRS is the external angle
∠PRS=∠QPR+∠PQR..............(1) [External angle is sum of two interior opposite angles]
In TQR
∠TRS is the external angle
∠TRS=∠TQR+∠QTR..............(2) [External angle is sum of two interior opposite angles]
Putting ∠TRS=12∠PRS & ∠TQR=12∠PQR
12∠PRS=12∠PQR+∠QTR
Putting ∠PRS=∠QPR+∠PQR from (1)
12(∠QPR+∠PQR)=12∠PQR+∠QTR
12∠QPR+12∠PQR=12∠PQR+∠QTR
12∠QPR+12∠PQR−12∠PQR=∠QTR
∠QTR=12∠QPR
Hence proved.