In figure,A,B,C and D are four points on a circle. AC and BD intersect at a point E such that ∠BEC=130∘ and ∠ECD=20∘. Find ∠BAC (in degrees).
∠CED+∠BEC=180∘ (Linear Pair)
⇒∠CED+130∘=180∘
⇒∠CED+180∘−130∘=50∘ ...............(i)
Now, ∠ECD=200 ...............(ii)
In ΔCED,
∠CED+∠ECD+∠CDE=1800 [Sum of all the angles of a triangle is 180∘]
⇒50∘+20∘+∠CDE=180∘ [Using (i) and (ii)]
⇒70∘+∠CDE=180∘
⇒∠CDE=180∘−70∘
⇒∠CDE=∠CDB=110∘ .............(iii)
Now ∠BAC=∠CDB=110∘ (angles in the same segment are equal)
Hence, ∠BAC=110∘