In Figure , AB=BC. If the area of â–³ ABE is x, calculate the area of â–³ ACD.
AB=BC ....Given
So, AB:AC=1:2 ...(I)
∠BED+∠BEA=180o ...Angles in linear pair
∴118o+∠BEA=180o
∴∠BEA=62o=∠CDA ...(II)
In △ABE and △ACD
∠A is the common angle.
∴∠BEA=∠CDA ... from (II)
△ABE∼△ACD ....AAA test of similarity
So, A(△ABE)A(△ACD)=(ABAC)2 ....Theorem on ratio of areas of similar triangles
⇒A(△ABE)A(△ACD)=(12)2
⇒xA(△ACD)=14
A(△ACD)=4x sq. units