In figure, ∠AOF and ∠FOG form a linear pair. If ∠EOB=∠FOC=90∘ and ∠DOC=∠FOG=∠AOB=30∘
i. Name all the right angles
Open in App
Solution
∠DOG,∠AOD,∠FOC and EOB
Given:∠EOB=∠FOC=90∘ and ∠DOC=∠FOG=∠AOB=30∘
As ∠AOF and ∠FOG from a linear pair ⇒∠AOF+∠FOG=180∘ ⇒∠AOB+∠EOB+∠FOE+∠FOG=180∘ ⇒30∘90∘+∠FOE+30∘=180∘⇒150∘+∠FOE=180∘ ∠FOE=180∘−150∘ ∴∠FOE=30∘
Given that :∠FOC=90∘ ⇒∠FOE+∠DOE=∠COD=90∘ ⇒30∘+∠DOE+30∘=90∘ ⇒∠DOE=90∘−60∘ ∴∠DOE=30∘
Also ∠EOB=90∘ ⇒∠DOE+∠DOC+∠COB=90∘ ⇒30∘+30∘+∠COB=90∘ ⇒∠COB=90∘−60∘ ∴∠COB=30∘
Thus, ∠FOE=∠COB=∠DOE=30∘
Now, ∠DOE+∠FDE+∠FOG=30∘+30∘+30∘=90∘
Now, ∠AOB+∠COB+∠DOC=30∘+30∘+30∘=90∘ ⇒∠AOD=90∘
From above, we get two right angles ∠DOG and ∠AOD and two right angles are already given as ∠FOC and ∠EOB.
Hence, ∠DOG, ∠AOD, ∠FOC and ∠EOB are right angles.