Given, ∠OAB=30∘ and ∠OCB=57∘
In ΔAOB,
AO = OB [both are the radius of the same circle]
⇒ ∠OBA=∠BAO=30∘ [angles opposite to equal sides are equal]
⇒ ∠AOB+∠OBA+∠BAO=180∘ [by angle sum property of a triangle]
∴ ∠AOB+30∘+30∘=180∘
∴ ∠AOB=180∘−2(30∘)
∠AOB=180∘−60∘=120∘...........(i)
Now, in ΔOCB,
OC = OB [both are the radius of a circle]
∠OBC=∠OCB=57∘ [angles opposite to equal sides are equal]
∠COB+∠OCB+∠CBO=180∘ [by angle sum property of triangle]
∠COB=180∘−(∠OCB+∠OBC)
∠COB=180∘−(57∘+57∘)
∠COB=180−114∘=66∘
From Eq. (i) ∠AOB=120∘
⇒ ∠AOC+∠COB=120∘
⇒ ∠AOC+66∘=120∘
∴ ∠AOC=120∘−66∘=54∘