In
△PQR, since
PS is angle bisector & applying angle, bisector theorem
PRPQ=SRSQ
△RTS≈△RPQ (similarity)
SRSQ=TRTP
Given
∠PTS=90∘
∴ In
ΔPTS, since
∠TPS=45∘ (PS - angle
bisector)
∠PST also
=45∘
∴∠ PTS is an isosceles
△
⇒PT=ST
Using (2) in (1), we get
SRSQ=TRST…..(3)
TR=PR−PT
=PR−ST
From
(A) and
(B), we get
PRPQ=SRSQ=TRST∴PR×ST=TR×PQ=(PR−ST)×PQ=PR×PQ−ST×PQ∴PR×ST+ST×PQ=PR×PQ⇒ST(PR+PQ)=PR×PQ
Hence proved.