wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In figure, D is the mid-point of side BC and AEBC. If BC=a, AC=b, AB=c, ED=x, AD=p and AE=h, prove that c2=p2ax+a24.
1220575_fe2d9581b9d7434789a814ecb456cea7.png

Open in App
Solution


AEBC
BD=CD
BC=a, AC=b, AB=c, ED=x, AD=p, AE=h
To prove: c2=p2ax+a24
Proof:-
In ABE
AB2=AE2+BE2
AB2=AE2+(BCEDCD)2
AB2=AE2+(BCEDBC2)2
AB2=AE2+(BC2ED)2
c2=h2+(a2x)2
c2=h2+a24+x2ax------------(1)

In AED
AE2+ED2=AD2
h2+x2=p2------------------(2)

Using Equation (2) in (1), we get
c2=h2+x2+a24ax
c2=p2ax+a24


1187132_1220575_ans_ab17d388611945679d9f35eb669245f7.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Bulls Eye View of Geometry
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon