wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In figure, D is the mid-point of side BC and AEBC. If BC=a, AC=b, AB=C, ED=x, AD=p and AE=h, prove that b2+c2=2p2+a22.
1220583_f6aedfb494fe4c1c90a5d2badd39f83f.png

Open in App
Solution

Given:
AEBC
BD=CD
BC=a,AB=c,AD=p,AC=b,ED=x,AE=h


Proof:-
In ABC,
AB2=AE2+BE2
AB2=AE2+(BCEDCD)2
AB2=AE2+(BCEDBC2)2
c2=h2+(a2x)2
c2=h2+a24+x2ax-------------(1)

In AEC,
AC2=AE2+CE2
b2=h2+(BC2+ED)2
b2=h2+(a2+x)2
b2=h2+a24+x2+ax---------------(2)

In AED
AE2+ED2=AD2
h2+x2=p2-------------------(3)

Using Equation (3) in (1), we get
c2=h2+x2+a24ax
c2=p2ax+a24-----------------------(4)

Using Equation(3) in (2),
b2=h2+x2+a24+ax
b2=p2+ax+a24-----------------------(5)

Adding Equation (4) & (5), we get
c2+b2=2p2+a22


1189814_1220583_ans_9cf83ca0867a4d2ba89fd1f3f69cd22b.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythogoras Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon