In ΔABC, we have
AB = AC
⇒∠ACB=∠ABC
⇒∠ACB=50∘[∠ABC=50∘]
∴∠BAC=180∘–(∠ABC+∠ACB)
⇒∠BAC=180∘–(50∘+50∘)=80∘
Since∠BAC and ∠BDC are angles in the same segment.
∴∠BDC=∠BAC⇒∠BDC=80∘
Now, BDCE is a cyclic quadrilateral.
∴∠BDC+∠BEC=180∘
⇒80∘+∠BEC=180∘⇒∠BEC=100∘
Hence, ∠BDC=80∘ and ∠BEC=100∘