Proof:
ACD is a right triangle.
So, AD2=AC2+CD2 [Pythagoras theorem]
Multiply both sides by 4 , get:
4AD2=4AC2+4CD2
4AD2=4AC2+4BD2[ As: D is the midpoint of BC,CD=BD =12BC]
4AD2=4AC2+(2BD)2
4AD2=4AC2+BC2
... (1) [As:BC=2BD]
(ii) BCE is a right triangle.
BE2=BC2+CE2
[Pythagoras theorem]
Multiply both sides by 4 , get:
4BE2=4BC2+4CE2
4BE2=4BC2+(2CE)2
4BE2=4BC2+AC2
… (2) [As: E is the mid-point of
AC,AE=CE=12AC]
(iii) Adding equation (1) and (2)
4AD2+4BE2=4AC2+BC2+4BC2+AC2
4AD2+4BE2=5AC2+5BC2
4(AD2+BE2)=5(AC2+BC2)
4(AD2+BE2)=5(AB2)