Question 8
In figure, if DEIIBC, find the ratio of ar (ΔADE) and ar (DECB).
Given, DE || BC, DE= 6 cm and BC = 12 cm
In ΔABC and ΔADE,
∠ABC=∠ADE [corresponding angles]
∠ACB=∠AED [corresponding angles]
and ∠A=∠A [common angle]
∴ΔABC∼ΔADE [by AAA similarity criterion]
Then, ar(ΔADE)ar(ΔABC)=(DE)2(BC)2
(By similar triangle property)
=(6)2(12)2=(12)2
⇒ ar(ΔADE)arΔABC=(12)2=14
Let ar (ΔADE)=k, then ar (ΔABC)=4k
Now, ar(DECB)=ar(ABC)−ar(ADE)=4k−k=3k
∴ Required ratio = ar(ADE) : ar(DECB) = k : 3k = 1 : 3