Given, DE || BC, DE= 6cm and BC = 12cm
In ΔABC and ΔADE,
∠ABC=∠ADE [corresponding angle]
∠ACB=∠AED [corresponding angle]
And ∠A=∠A [common side]
∴ ΔABC∼ΔAED [by AAA similarity criterion]
Then, ar(ΔADE)ar(ΔABC)=(DE)2(BC)2
=(6)2(12)2=(12)2
⇒ ar(ΔADE)arΔABC=(12)2=14
Let ar (ΔADE)=k, then ar (ΔABC)=4k
Now, ar(DECB)=ar(ABC)−ar(ADE)=4k−k=3k
∴ Required ratio = ar(ADE) : ar(DECB) = k : 3k = 1 : 3