Given OT= 13 cm and OP = 5cm
If we draw a line from the centre to the tangent of the circle it is always perpendicular to the tangent i.e . OP ⊥ PT.
In right angled Δ OPT,
OT2=OP2+PT2
[ by Pythagoras theorem:
(hypotenuse)2=(base)2+(perpendicular)2]
⇒PT2=(13)2−(5)2=169−25=144
⇒ PT = 12 cm
Since, the length of pair of tangents from an external point T is equal.
∴ QT = 12 cm
Now. TA = PT - PA …………(i)
⇒ TA = 12 - PA
And TB = QT - QB ……..(ii)
⇒ TB = 12 - QB
Again, using the property, length of pair of tangents from an external point is equal.
∴ PA = AE and QB = EB (iii)
OT = 13 cm (Given)
∴ ET = OT - OE [ ∴ OE = 5cm = radius]
⇒ ET = 13 - 5
⇒ ET = 8cm
Since AB is a tangent OE is the radius
∴ OE ⊥ AB
⇒ OEA = 90∘ [ linear pair]
∠AET+∠OEA=180∘
∴∠AET=180∘−∠OEA
⇒∠AET=90∘
Now, in right angled Δ AET,
(AT)2=(AE)2+(ET)2 [by Pythagoras theorem]
⇒(PT−PA)2=(AE)2+(8)2⇒(12−PA)2=(PA)2+(8)2(from eq(iii)]⇒144+(PA)2−24PA=(PA)2+64⇒24PA=80
⇒PA=103cm⇒AE=103cm [from(iii)]BE=103cmAB=AE+EB=103+103=203cm
Hence the required length AB is 203cm