In Figure , ¯¯¯¯¯¯¯¯¯QR=¯¯¯¯¯¯¯¯RS. If the area of △RST is c2, what is the area of △QSP?
QR=RS ....Given
So, SR:SQ=1:2 ...(I)
∠RTP+∠RTS=180o ...Angles in linear pair
∴126o+∠RTS=180o
∴∠RTS=54o=∠SPQ ...(II)
In △RST and △QSP
∠S is the common angle.
∴∠RTS=∠SPQ ... from (II)
△RST∼△SPQ ....AAA test of similarity
So, A(△RST)A(△SPQ)=(RSSQ)2 ....Theorem on ratio of areas of similar triangles
⇒A(△RST)A(△SPQ)=(12)2
⇒c2A(△SPQ)=14
A(△SPQ)=2c sq. units