As AE bisects ∠A, then,
∠BAE=∠CAE
In ΔADC,
∠ADC+∠DAC+∠ACD=180∘
90∘+∠DAC+∠C=180∘
∠C=90∘−∠DAC
In ΔADB,
∠ADB+∠DAB+∠ABD=180∘
90∘+∠DAB+∠B=180∘
∠B=90∘−∠DAB
∠C−∠B=∠DAB−∠DAC
∠C−∠B=(∠BAE+∠DAE)−(∠CAE−∠DAE)
∠C−∠B=∠BAE+∠DAE−∠BAE+∠DAE
∠C−∠B=2∠DAE
12(∠C−∠B)=∠DAE