Given, Bisectors of ∠PQRand ∠PRS meet at point T.
To prove: ∠QTR=12∠QPR.
Proof,
∠TRS=∠TQR+∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)
⇒∠QTR=∠TRS−∠TQR --- (i)
Also ∠SRP=∠QPR+∠PQR
2∠TRS=∠QPR+2∠TQR
∠QPR=2∠TRS−2∠TQR
⇒12∠QPR=∠TRS−∠TQR --- (ii)
Equating (i) and (ii),
∴∠QTR=12∠QPR [henceproved]