In figure the sides AB and AC of ΔABC are produced to point E and D repectively. If bisector BO and CO of ∠CBE and ∠BCD respectively meet a point O, then ∠BOC=90∘−12∠BAC
Open in App
Solution
BO is the bisector of ∠CBE
So, ∠CBO=∠EBO=12⋅∠CBE
Similarly,CO is the bisector of ∠BCD.
So, ∠BCO=∠DCO=12∠BCD
∠CBE is the exterior angle of ΔABC
Hence, ∠CBE=x+z
(External angle sum of two interior opp angles)
12⋅(∠CBE)=12(x+z)
∠CBO=12⋅(x+z)
Similarly, ∠BCD is the exterior angle of ΔABC.
Hence, ∠BCD=x+y
(External angle is sum of two interior opposite angles)
12∠BCD=12(x+y)
∠BCO=12(x+y)
In ΔOBC,
∠BOC+∠BCO+∠CBO=180∘
(angle sum property of triangles)
∠BOC+12(x+y)+12(x+z)=180∘
∠BOC+12(x+y)+12(x+z)=180∘
∠BOC+12(x+y+y+z)=180∘ …….(1)
In ΔABC,
x+y+z=180o ………..(2)(Angle sum property of triangle)