In ΔPQR,
PR>PQ (Given)
⇒∠PQR>∠PRQ ...(1)
(Angle opposite to side of greater length is greater
PS is the bisector of ∠P, so∠x=∠y
Adding ∠x in (1)
⇒∠PQR+∠x>∠PRQ+∠x
⇒∠PQR+∠x>∠PRQ+∠y .... (2)
In ΔPQS,
∠PQS+∠x+∠PSQ=180∘
(Angle sum property of triangle)
∴∠PQS+∠x=180∘−∠PSQ ..... (3)
In ΔPSR ,
∠PRS+∠y+∠PSR=180∘
(Angle sum property of triangle)
∠PRS+∠y=180∘−∠PSR
Using equation (1), (2), (3) we get
180∘–∠PSQ>180∘−∠PSR ...(4)
⇒−∠PSQ>−∠PSR
⇒∠PSQ<∠PSR
So,
∠PSR>∠PSQ [henceproved]