BO Is the bisector of ∠CBE
So,∠CBO=∠EBO=12∠CBE
Similarly,
CO is bisector of ∠BCD
So, ∠BCO=∠DCO=∠12BCD
∠CBE is the exterior angle of ΔABC,
So,
∠CBE=x+z (External angle is sum of two interior opposite angle )
12∠CBE=12(x+z)
Similarly,
∠BCD is the exterior angle of ΔABC
Hence,
∠BCD=x+y
12∠BCD=12(x+y)
∠BCO=12(x+y)
In ΔOBC
∠BOC+∠BCO+∠CBO=1800
∠BOC+12(x+y)+12(x+z)=1800
∠BOC+12(x+y+x+z)=1800
In △ABC
x+y+z=1800
Hence,
∠BOC+(x+y+x+z)=1800 $
∠BOC+x2+900=1800
∠BOC=900−x2