As ΔABE is right angled triangle, then,
⇒ (AE)2=(AB)2+(BE)2 ............(1)
Similarly, ΔDBC is right angled triangle, so,
⇒ (CD)2=(BD)2+(BC)2 ............(2)
Add equation (1) and (2),
⇒ (AE)2+(CD)2=(AB2+BE2)+(BD2+BC2)
⇒ (AE)2+(CD)2=(AB2+BC2)+(BD2+BE2) ............(3)
In ΔABC,
AC2=AB2+BC2
In ΔDBE,
⇒ DE2=BE2+BD2
So, equation (3) becomes,
⇒ (AE)2+(CD)2=(AC)2+(DE)2
⇒ (AE)2+(CD)2=(AC)2+(DE)2. [Hence proved]