We have,
AB⊥BC and DM⊥BC
⇒ AB||DM
Similarly, we have
CB⊥AB and DN⊥AB
⇒ CB||DN
Hence, quadrilateral BMDN is a rectangle.
∴ BM=ND
(i) In △BMD, we have
∠1+∠BMD+∠2=1800
⇒ ∠1+900+∠2=1800
⇒ ∠1+∠2=900
Similarly, in △DMC, we have
∠3+∠4=900
Since BD⊥AC. Therefore,
∠2+∠3=900
Now, ∠1+∠2=900 and ∠2+∠3=900
⇒ ∠1+∠2=∠2+∠3
⇒ ∠1=∠3
Also, ∠3+∠4=900 and ∠2+∠3=900
⇒ ∠3+∠4=∠2+∠3⇒∠2=∠4
Thus, in △′sBMD and DMC, we have
∠1=∠3 and ∠2=∠4
So, by AA-criterion of similarity, we have
△BMD∼△DMC
⇒ BMDM=MDMC
⇒ DNDM=DMMC [∵BM=ND]
⇒ DM2=DN×MC [Hence proved]
(ii) Proceeding as in (i), we can prove that
△BND∼△DNA
⇒ BNDN=NDNA
⇒ DMDN=DNAN
⇒ DN2=DM×AN [Hence proved]