It is given that CD and GD are medians of △′sABC and EFG respectively.
∴ 2AD=AB and 2FH=FE......(i)
It is also given that △ABC∼△FEG
∴ ABFE=ACFG=BCEG and, ∠A=∠F,∠B=∠E,∠C=∠G...........(ii)
Now, ABFE=ACFG=BCEG
⇒ 2AD2FH=ACFG=BCEG [Using (i)]
⇒ ADFH=ACFG=BCEG.........(iii)
(I) In △′sADC and FHG, we have
ADFH=ACFG [From (iii)]
and , ∠A=∠F
So, by SAS criterion of similarity, we have
△ADC∼△FHG [Hence proved]
(ii) we have,
△ADC∼△FHG [Proved above]
⇒ DCHG=ADFH
⇒ CDGH=2AD2FH
⇒ CDGH=ABFE [∵ AB=2AD and FE=2FH] [Hence proved]
(iii) We have,
ABFE=ACFG=BCEG [From (i)]
Also, CDGH=ABFE [As proved above]
∴ CDGH=BCEG.......(iv)
Again, ABFE=ACFG=BCEG
⇒ 2DB2HE=BCEG [∵ D and H are mid-points of AB and FE respectively]
⇒ DBHE=BCEG
From (iv) and (v), we have
CDGH=BCEG=DBHE
⇒ CDGH=DBHE=BCEG
⇒ △CDB∼△GHE [By SSS criterion of similarity] [Hence proved]