wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In given figure, D is the mid-point of side BC and AE BC. If BC=a, AC=b, ED=x, AD=p and AE=h, prove that:
c2=p2ax+a24

969509_e6a98cd5623d43ee93091ce8542e8864.png

Open in App
Solution

i)D is the mid-point of BC and AEBC.
InABE, AB2=AE2+BE2(1)(pythagoras thm)

ADE, AD2=AE2+ED2(2)(pythagoras thm)

AB2=AD2ED2+BE2
AB2=AD2DE2+(BDDE)2
AB2=AD2DE2+BD2+DE22BD×DE
AB2=AD22BD×DE+BD2
AB2=AD22BD×DE+BD2

AB2=AD22(BC2)×DE+(BC2)2

AB2=AD2BC×DE+BC24
AB=c,AD=p,BC=a,DE=x
c2=p2ax+a24

ii)Consider AEC,AD=p,BC=a,AC=b
AC2=AE2+EC2
AC2=AE2+(ED+DC)2(1)

From AED
AD2=AE2+ED2AE2=AD2ED2(2)

From (1)
AC2=AD2ED2+ED2+2ED.DC+DC2
AC2=AD2+2×x×a2+(BC2)2[DC=BC2]
AC2=AD2+ax+a24
AC=b;AD=D
b2=p2+ax+a24

iii)Consider, AEC,AC=b,AB=c
AC2=AE2+EC2(1)

From ABE;AB2=AE2+BE2(2)

From AED;AD2=AE2+ED2

AE2=AD2ED2(3)

By adding(1)&(2)
AC2+AB2=2AE2+EC2+BE2
=2(AD2ED2)+EC2+BE2
AC2+AB2=2AD22ED2+EC2+BE2
=2AD22ED2+(EC2+BE2)
=2AD22ED2+BC2

b2+c2=2p2+a24

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Apollonius's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon