i)
D is the mid-point of
BC and
AE⊥BC.In△ABE, AB2=AE2+BE2−(1)(pythagoras thm)
△ADE, AD2=AE2+ED2−(2)(pythagoras thm)
⟹AB2=AD2−ED2+BE2
∴AB2=AD2−DE2+(BD−DE)2
AB2=AD2−DE2+BD2+DE2−2BD×DE
∴AB2=AD2−2BD×DE+BD2
∴AB2=AD2−2BD×DE+BD2
AB2=AD2−2(BC2)×DE+(BC2)2
AB2=AD2−BC×DE+BC24
AB=c,AD=p,BC=a,DE=x
c2=p2−ax+a24
ii)Consider △AEC,AD=p,BC=a,AC=b
AC2=AE2+EC2
⟹AC2=AE2+(ED+DC)2−(1)
From △ AED
⟹AD2=AE2+ED2⟹AE2=AD2−ED2−(2)
From (1)
AC2=AD2−ED2+ED2+2ED.DC+DC2
AC2=AD2+2×x×a2+(BC2)2[DC=BC2]
⟹AC2=AD2+ax+a24
AC=b;AD=D
⟹b2=p2+ax+a24
iii)Consider, △AEC,AC=b,AB=c
AC2=AE2+EC2−(1)
From △ABE;AB2=AE2+BE2−(2)
From △AED;AD2=AE2+ED2
∴AE2=AD2−ED2−(3)
By adding(1)&(2)
AC2+AB2=2AE2+EC2+BE2
=2(AD2−ED2)+EC2+BE2
AC2+AB2=2AD2−2ED2+EC2+BE2
=2AD2−2ED2+(EC2+BE2)
=2AD2−2ED2+BC2
⟹b2+c2=2p2+a24