In △ABC, we have
DE||BC
⇒ ∠ADE=∠ABC and ∠AED=∠ACB [Corresponding angles]
Thus, in triangles ADE and ABC, we have
∠A=∠A [Common]
∠ADE=∠ABC
and, ∠AED=∠ACB
∴ △AED∼△ABC [By AAA similarity]
⇒ ADAB=DEBC
We have,
ADDB=54
⇒ DBAD=45
⇒ DBAD+1=45+1
⇒ DB+ADAD=95
⇒ ABAD=95⇒ADAB=59
∴ DEBC=59
In △DFE and △CFB, we have
∠1=∠3 [Alternate interior angles]
∠2=∠4 [Vertically opposite angles]
Therefore, by AA-similarity criterion, we have
△DFE∼△CFB
⇒ Area(△DFE)Area(△CFB)=DE2BC2
⇒ Area(△DFE)Area(△CFB)=(59)2=2581.....[Using (i)]