(i) In △AGF and △DBG, we have
∠GAF=∠BDG
[EAch equal to 900] and,
∠AGF=∠DBG
[Corresponding angles]
∴ △AGF∼△DBG [By AA-criterion
of similarity] [Hence proved]
(ii) In △AGF and △EFC, we have
∠FAG=∠CEF
[Each equal to 900] and,
∠AFG=∠ECF
[Corresponding angles]
∴ △AGF∼△EFC
[By AA-criterion of similarity] [Hence proved]
(iii) Since △AGF∼△DBG and
△AGF∼△EFC
∴ △DBG∼△EFC [Hence proved]
(iv) we have,
△DBG∼△EFC
[Using (iii)]
∴ BDEF=DGEC
⇒ BDDE=DEEC
[∵ DEFG is a square ∴ EF=DE, DG=DE]
⇒ DE2=BD×EC [Hence proved]