Let O be a point in the interior of △ABC, and let OD⊥BC,OE⊥CA and OF⊥AB
(i) In right triangles △OFA,△ODB and △OEC we have
OA2=AF2+OF2
OB2=BD2+OD2
and, OC2=CE2+OE2
Adding all these results, we get
OA2+OB2+OC2=AF2+BD2+CE2+OF2+OD2+OE2
⇒ AF2+BD2+CE2=OA2+OB2+OC2−OD2−OE2−OF2 [Hence proved]
(ii) In right triangles △ODB and △ODC, we have
OB2=OD2+BD2
and, OC2=OD2+CD2
∴ OB2−OC2=(OD2+BD2)−(OD2+CD2)
⇒ OB2−OC2=BD2−CD2.......(i)
Similarly, we have
⇒ OC2−OA2=CE2−AE2.......(ii)
and, OA2−OB2=AF2−BF2.......(iii)
Adding (i), (ii) and (iii), we get
(OB2−OC2)+(OC2−OA2)+(OA2−OB2)=(BD2−CD2)+(CE2−AE2)+(AF2−BF2)
⇒ (BD2+CE2+AF2)−(AE2+CD2+BF2)=0
⇒ AF2+BD2+CE2=AE2+BF2+CD2 [Hence proved]