Given a right triangle ABC right angled at B and BD⊥AC
To prove
(i) △ADB∼△BDC
(ii) △ADB∼△ABC
(iii) △BDC∼△ABC
(iv) BD2=AD×DC
Solution:
(i) In △ADB and △BDC, we have:
∠ABD+∠DBC=900
Also ∠C+∠DBC+∠BDC=1800
⇒ ∠C+∠DBC+900=1800
⇒ ∠C+∠DBC=900
But, ∠ABD+∠DBC=900
∴ ∠ABD+∠DBC=∠C+∠DBC
⇒ ∠ABD=∠C.........(1)
Thus, in △ADB and △BDC, we have:
∠ABD=∠C [From (1)]
and, ∠ADB=∠BDC [Each equal to 900]
So, by AA-similarity criterion, △ADB∼△BDC [Hence proved]
(ii) In △ADB and △ABC, we have:
∠ADB=∠ABC [Each equal to 900]
and, ∠A=∠A [Common]
So, by AA-similarity criterion, △ADB∼△ABC [Hence proved]
(iii) In △BDC and △ABC, we have:
∠BDC=∠ABC [Each equal to 900]
∠C=∠C [Common]
So, by AA-similarity criterion, △BDC∼△ABC [Hence proved]
(iv) From (i), we have
△ADB∼△BDC
∴ ADBD=BDDC
⇒ BD2=AD×DC [Hence proved]