In △′sBDA and ADC, we have
DBDA=DADC [Given]
∠BDA=∠ADC [Each equal to 90∘]
So, by SAS-criterion of similarity, we have
△BDA∼△ADC
⇒ ∠ABD=∠CAD and ∠BAD=∠ACD
⇒ ∠ABD+∠ACD=∠CAD+∠BAD
⇒ ∠B+∠C=∠A
⇒ ∠A+∠B+∠C=2∠A [Adding ∠A on both sides]
⇒ 2∠A=1800
⇒ ∠A=900
⇒ △ABC is a right triangle. [Hence proved]