In right-angled △OPR,
OP2=PR2+OR2
⇒OR2=52−42=25−16=9
⇒OR=√9=3
In right-angled
△PRT,
TP2=RT2+PR2.....(1)
In right-angled △OTP,
OT2=OP2+TP2
OT2=OP2+(RT2+PR2)(From (1))
(OR+RT)2=52+RT2+42
(3+RT)2=41+RT2
RT2+9+6RT=41+RT2
⇒6RT=41−9
⇒RT=326=163
Substituting the value of RT in equation (1), we have
TP2=(163)2+42
⇒TP2=2569+16
⇒TP=√256+1449
→TP=√4009=203cm