Im,n=∫10xm−1.(1−x)n−1dx
Put x=1y+1⇒dx=−1(y+1)2dy
1−x=yy+1
∴Im,n=∫0∞yn−1(y+1)m+n(−1)dy
=∫∞0yy−1(y+1)m+ndy...(1)
Similarly,
Im,n=∫10xn−1.(1−x)m−1dx
⇒Im,n=∫∞0ym−1(y+1)m+ndy...(2)
From (1) & (2)
2Im,n=∫∞0ym−1+yn−1(y+1)m+ndy
⇒2Im,n=∫10ym−1+yn−1(y+1)m+ndyI1+∫∞1ym−1+yn−1(y+1)m+ndyI2
Put y=1z in I2
dy=−1z2dz
⇒2Im,n=∫10ym−1+yn−1(y+1)m+ndy+∫01zm−1+zn−1(z+1)m+n(−dz)
⇒Im,n=∫10ym−1+yn−1(y+1)m+nd⇒α=1