In isosceles triangle triangle ABC, AB=AC. The side BA is produced to D such that BA=AD. Prove that : ∠BCD=90∘.
Const: Join CD.
In triangle ABC
AB=AC
∠ACB=∠ABC......(i)
In triangle ACD
AC=AD
∠ADC=∠ACD.......(ii)
Adding (i) and (ii)
∠ABC+∠ADC =∠ACB+∠ACD
∴∠ABC+∠ADC=∠BCD.......(iii)
[from figure, ∠ACB+∠ACD=∠BCD]
In triangle BCD, we have
∠ABC+∠ADC+∠BCD=180
∠BCD+∠BCD=180 [From equation(iii)]
2∠BCD=180
∴∠BCD=90