The correct option is C 245
We have to find the coefficient of third term in Maclaurin series of sin2x.
The Maclaurin series is given by f(x)=∑∞k=0f(k)(a)k!xk where a=0
We have f(x)=sin2x
Since we have to find the coefficient of the third term, let us take n=8.
∴f(x)≈∑8k=0f(k)(0)k!xk
f(0)(x)=sin2x,⇒f(0)(0)=0
f(1)(x)=2sinxcosx,⇒f(1)(0)=0
f(2)(x)=−2sin2x+2cos2x,⇒f(2)(0)=2
f(3)(x)=−8cosxsinx,⇒f(3)(0)=0
f(4)(x)=8sin2x−8cos2x,⇒f(4)(0)=−8
f(5)(x)=32sinxcosx,⇒f(5)(0)=0
f(6)(x)=−32sin2x+32cos2x,⇒f(6)(0)=32
f(7)(x)=−128sinxcosx,⇒f(7)(0)=0
f(8)(x)=128sin2x−128cos2x,⇒f(8)(0)=−128
∴f(x)≈0x0+0x1+22!x2+03!x3+−84!x4+05!x5+326!x6+07!x7+−1288!x8
⇒f(x)≈x2−13x4+245x6−1135x5
Thus the coefficient of third term is 245.