The correct option is
B 3.4 eVFor orbit
n:
mvnRn=2nh2π⇒vnRn=nhmπ...(i)
Electrostatic force is providing centripetal force for electron's circular motion:
14πϵ∘e2R∘2=mv2nRn .....(ii)
14πϵ∘e2m=v2nRn...(iii)
Substituting vnRn from equation (i)
vnnhmπ=14πϵ∘e2m
vn=e24ϵ∘nh
From relation (i) Rn=nhmπvn
Rn=nh24ϵ∘me2π
Now the total energy will be :
K.E.+P.E.=12mv2n−Ke2Rn=12m(e24ϵ∘nh)2−e24πϵ∘nh24ϵ∘me2π
Substituting n=1 for ionization energy.
=12mv2n−Ke2Rn=12m(e24ϵ∘nh)2−Ke2nh24ϵ∘me2π
T.E.otherplanet=me432ϵ∘2h2
Similarly T.E of hydrogen atom in earth can be calculated:
For orbit n:
mvnRn=nh2π⇒vnRn=nh2mπ...(i)
Electrostatic force is providing centripetal force for electron's circular motion:
14πϵ∘e2R∘2=mv2nRn...(ii)
14πϵ∘e2m=v2nRn...(iii)
Substituting vnRn from equation (i)
vnnh2mπ=14πϵ∘e2m
vn=e22ϵ∘nh
From relation (i) Rn=nh2mπvn
Rn=nh2ϵ∘me2π
Now the total energy will be :
K.E.+P.E =12mv2n−Ke2Rn=12m(e22ϵ∘nh)2−e24πϵ∘nh2ϵ∘me2π
substituting n=1 for ionization energy
=12mv2n−Ke2Rn=12m(e22ϵ∘nh)2−e24πϵ∘nh2ϵ∘me2π
T.E.earth=−me48ϵ∘2h2
Clearly T.E.earth=4T.E.otherplanet
Hence, T.E.otherplanet=T.E.earth4=−13.44=−3.4eV