wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In our world, the ionization potential energy of a hydrogen atom is 13.6 eV. On the other planet, this ionization potential energy will be :
172281.png

A
13.6 eV
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3.4 eV
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1.5 eV
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0.85 eV
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 3.4 eV
For orbit n:
mvnRn=2nh2πvnRn=nhmπ...(i)
Electrostatic force is providing centripetal force for electron's circular motion:
14πϵe2R2=mv2nRn .....(ii)
14πϵe2m=v2nRn...(iii)
Substituting vnRn from equation (i)
vnnhmπ=14πϵe2m
vn=e24ϵnh
From relation (i) Rn=nhmπvn
Rn=nh24ϵme2π
Now the total energy will be :
K.E.+P.E.=12mv2nKe2Rn=12m(e24ϵnh)2e24πϵnh24ϵme2π
Substituting n=1 for ionization energy.
=12mv2nKe2Rn=12m(e24ϵnh)2Ke2nh24ϵme2π
T.E.otherplanet=me432ϵ2h2
Similarly T.E of hydrogen atom in earth can be calculated:
For orbit n:
mvnRn=nh2πvnRn=nh2mπ...(i)
Electrostatic force is providing centripetal force for electron's circular motion:
14πϵe2R2=mv2nRn...(ii)
14πϵe2m=v2nRn...(iii)
Substituting vnRn from equation (i)
vnnh2mπ=14πϵe2m
vn=e22ϵnh
From relation (i) Rn=nh2mπvn
Rn=nh2ϵme2π
Now the total energy will be :
K.E.+P.E =12mv2nKe2Rn=12m(e22ϵnh)2e24πϵnh2ϵme2π
substituting n=1 for ionization energy

=12mv2nKe2Rn=12m(e22ϵnh)2e24πϵnh2ϵme2π
T.E.earth=me48ϵ2h2
Clearly T.E.earth=4T.E.otherplanet
Hence, T.E.otherplanet=T.E.earth4=13.44=3.4eV

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Characteristics of Bohr's Model
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon