We have,
In ΔPAB,PA=PB
Let, P(a,b) be the point.
Suppose that
A(x1,y1)=(1,2)
P(x2,y2)=(a,b)
C(x3,y3)=(3,8)
\end{align}$
Then,
Given that,
PA=PB
√(x2−x1)2+(y2−y1)2=√(x2−x3)2−(y2−y3)2
⇒√(a−1)2+(b−2)2=√(a−3)2−(b−8)2
Squaring both side and we get,
(a−1)2+(b−2)2=(a−3)2+(b−8)2
⇒a2+1−2a+b2+4−4b=a2+9−6a+b2+64−16b
⇒−2a−4b+5=−6a−16b+65
⇒−2a−4b+5+6a+16b−65=0
⇒4a+12b−60=0
⇒a+3b−15=0......(1)
But again given that,
Areaof ΔPAB=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
10=12[1(b−8)+a(8−2)+3(2−b)]
20=b−8+6a+6−3b
20+2=6a−2b
6a−2b=22
3a−b=11
3a−b−11=0......(2)
By equation (1) and (2) to and we get,
(a+3b=15)×3
3a−b=11
3a+9b=45
3a−b=11
On subtracting and we get,
10b=34
b=3410
b=175
Put the value of b in equation (1) and we get,
a+3b−15=0
⇒a+3×175−15=0
⇒a+515−15=0
⇒a+51−755=0
⇒a−245=0
⇒a=245
The value of P(a,b)=(245,175).
Hence, this is the answer.