In Q>No.1,Write the distance between the circumcentre and orthocentre ofΔOAB.
Point of intersection of altitudes from vertices A and B of triangle is O(0,0)⇒Orthocentre of triangle is O (0,0)Let,P(x,y)be the circumcentre of triangle ⇒OP=AP=BPOP2=AP2x2+y2=(x−a)2+y2⇒x2=x2−2ax+a2 ⇒a2=2axx=a2 and OP2=BP2x2+y2=(x−0)2+(y−b)2x2+y2=x2+y2−2by+b2⇒b2=2by ⇒y=b2So,circumcentre =p(a2,b2)Distance between orthocentre O(0,0)~andcircumcentre p(a2,b2) is=√(a2)2+(b2)2Required distance=12√a2+b2 units.