In quadrilateral ABCD, its diagonals AC and BD intersect at point O such that OCOA=ODOB=13
If CD =4.5 cm; find the length of AB.
13.5 cm
In quadrilateral ABCD, diagonals AC and BD intersect each other at O and OCOA=ODOB=13
In ΔOAB and ΔOCD
∠COD=∠AOB (Vertically opp. angles)
OCOA=ODOB=13 (given)
∴ΔOAB∼ΔOCD (SAS axiom)
OAOC=OBOD=ABCD
∵CDAB=13⇒4.5AB=13
AB=4.5×3=13.5cm