In question 1 (iii), (iv), (v) find the number of observations lying between ¯X−M.D. and ¯X−M.D, where M.D. is the mean deviation from the mean.
Let ¯x be the mean of the data set.
¯x=34+66+30+38+44+50+40+60+42+5110=45.5
M.D.=1n∑ni=1|di| where |di|=|xi−¯x|
xi|di|=|xi−45.5|3411.56620.53015.5387.5441.5504.5405.56014.5423.5515.5Total90
M.D.=110×90=9
¯x−M.D.=45.5−9=36.5
Also, ¯x+M.D.=45.5+9=54.5
Hence, there are 6 observation between 36.5 and 54.4
(ii) Let ¯x be the mean of the data set
¯x=22+24+30+27+29+31+25+28+41+4210=29.9
xi|di|=|xi−45.5|227.9245.9300.1272.9290.9311.1254.9281.94111.94212.1Total48.8
M.D.=110×48.8=4.88
¯x−M.D.=29.9−4.88=25.02, and ¯x+M.D.=29.9+4.88=34.78
There are 5 observations between 25.02 and 34.78
(v) Let ¯x be the mean of the data set.
¯x=38+70+48+34+63+42+55+44+53+4710=49.4
xi|di|=|xi−45.5|3811.47020.6481.43415.46313.6427.4555.6445.4533.6472.4Total86.8
M.D.=110×86.6=8.68
¯x−M.D=49.4−8.68=40.72
and ¯x+M.D.=49.4+8.68=58.08
There are 6 observations between 40.72' and and 58.08.